NASA Develops Light Microscope For International Space Station

NASA began testing a new multi-capability microscope this week on the International Space Station. It will help scientists study the effects of the space environment on physics and biology aboard the orbiting laboratory. The microscope is isolated from vibrations on the station, allowing it to obtain clear, high-resolution images. Using high-resolution magnification, scientists can examine microorganisms and individual cells of plants and animals, including humans.

The microscope will allow real-time study of the effects of the space environment without the need to return samples to Earth. Any living specimens returned to Earth must endure the effects of re-entry through the atmosphere. The ability to use the Light Microscopy Module (LMM) on station will enable scientists to study data unaffected by re-entry.

"We really need to maximize life science investigations conducted on the International Space Station," said Jacob Cohen, principal investigator of the technology demonstration and a researcher at NASA's Ames Research Center, Moffett Field, Calif. "It's really amazing to be able to remotely manage, optimize and troubleshoot experiments observed with a microscope in space without the need to return the samples back to Earth. This microscope is helping fulfill the vision of a true laboratory in space."

The biological samples for the LMM launched on space shuttle Discovery's STS-133 mission on Feb. 24. They include eight fixed slides containing yeast; bacteria; a leaf; a fly; a butterfly wing; tissue sections and blood; six containers of live C. elegans worms, an organism biologists commonly study; a typed letter "r" and a piece of fluorescent plastic. The wing is from a previous study, Butterflies in Space, involving students from around the country, and flown on STS-129 in 2009. Some of the worms are descendants of those that survived the space shuttle Columbia (STS-107) accident; and others are modified to fluoresce. Scientists commonly attach green, yellow and red florescent proteins to study gene expression.

Read More