Atlantis Astros Feted Today; Endeavour Crew Rehearse for STS-130

STS-129 astronauts after landing at KSC
After a flawless mission to resupply the International Space Station, the STS-129 crew members now are back at NASA's Johnson Space Center in Houston. They will be honored with a homecoming ceremony at nearby Ellington Field today.

Meanwhile, preparations for space shuttle Endeavour and its crew are ramping up for the STS-130 mission targeted to launch Feb. 4, 2010.

Endeavour is scheduled to roll over from the orbiter processing facility to the Vehicle Assembly Building at NASA's Kennedy Space Center in late December. There, it will be lifted and attached to the waiting external tank and twin solid rocket boosters.

The STS-130 crew members, Commander George Zamka, Pilot Terry Virts Jr., Mission Specialists Nicholas Patrick, Robert Behnken, Stephen Robinson and Kathryn Hire, are rehearsing deorbit procedures today at Johnson.

Endeavour will deliver a third connecting module, the Tranquility node, to the station in addition to the seven-windowed Cupola module, which will be used as a control room for robotics.

Homecoming for Atlantis

STS-129
The drag chute unfurled as space shuttle Atlantis landed on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year.

Crew Transport Vehicle in Place


Following purge and cooling system connections, the crew transport vehicle, or CTV, moved into position alongside the orbiter access hatch on Atlantis' port side.

With the crew hatch opened, the astronauts left the orbiter to enter the CTV.

The CTV contains beds and comfortable seats so that the astronauts can receive a brief medical checkup before stepping onto the tarmac.

Going Through the Safety Checklist

Work to safely shut down Atlantis' systems continues. It's been a little more than 30 minutes since the shuttle and its crew touched down at NASA's Kennedy Space Center in Florida. A landing convoy is gathering around the vehicle to work on "safing" procedures.

Following purge and cooling system connections, the crew transport vehicle, or CTV, will be moved into position alongside the orbiter access hatch on Atlantis' port side.

Atlantis Lands in Florida

Space shuttle Atlantis and its crew of seven astronauts ended an 11-day journey with a 9:44 a.m. EST landing at NASA's Kennedy Space Center in Florida. Atlantis flew 171 orbits around Earth and traveled 4,490,138 miles since its Nov. 16 launch.

The STS-129 mission included three spacewalks and the installation of two platforms to the International Space Station’s truss, or backbone. The platforms hold large spare parts to sustain station operations after the shuttles are retired. The shuttle crew delivered about 30,000 pounds of replacement parts for systems that provide power to the station, keep it from overheating, and maintain a proper orientation in space. The shuttle left the space station 86 percent complete, weighing 759,222 pounds.

Astronaut Nicole Stott returned to Earth after 91 days in space. She had spent 87 days aboard the space station and 80 days as an Expedition 20/21 flight engineer. She is the last astronaut who will be transported to or from the space station by the space shuttle.

Atlantis’ main gear touched down at 9:44:23 a.m., followed by the nose gear at 9:44:36 and wheel stop at 9:45:05 a.m.

STS-129 was the 129th space shuttle mission, the 31st for Atlantis and the 31st shuttle mission to the International Space Station. It was the fifth and final flight of 2009.

Atlantis Completes Deorbit Burn

At 8:37 a.m. EST, space shuttle Atlantis performed the deorbit burn, setting it on a course to return to Kennedy Space Center, Fla. The maneuver occurred while Atlantis was about 220 miles above Indonesia. Entry interface, the point at which Atlantis begins entering the Earth’s atmosphere, will occur at 9:12 a.m. The first roll reversal to slow the spacecraft will take place at 9:28 a.m. and Merritt Island radar tracking systems will acquire the shuttle at 9:31 a.m.

Atlantis will cross the Florida coast south of Bonita Springs and pass north of Lake Okeechobee, triggering dual sonic booms at about 9:40 a.m. as it slows to subsonic speeds. Commander Charlie Hobaugh will line up Atlantis with Kennedy’s southeast to northwest runway 33. Touchdown is expected at 9:44 a.m.

Atlantis Given "Go" for Deorbit Burn

Mission Control Capcom Chris Ferguson radioed a “go for deorbit burn” to space shuttle Atlantis Commander Charlie Hobaugh at 8:14 a.m. EST. The three minute, seven second maneuver scheduled for 8:37 a.m. will slow Atlantis by more than 200 miles per hour and lead to a landing at 9:44 a.m. at Kennedy Space Caenter, Fla.

Crew Given "Go" for Payload Bay Door Closing

At 5:52 a.m. EST, STS-129 entry Flight Director Bryan Lunney and his entry team of flight controllers gave space shuttle Atlantis Commander Charles Hobaugh a "go" to close the payload bay doors. Shortly, Atlantis will transition to the entry software program. The crew members will begin suiting up in their launch and entry suits at 7:14 a.m. and strap into their seats at 7:37 a.m. A "go-no go" call for the 8:37 a.m. deorbit burn is expected at 8:17 a.m.

Weather conditions at the Kennedy Space Center Shuttle Landing Facility are observed "go" and forecast "go" for the predicted landing time of 9:44 a.m. EST. NASA Flight Crew Operations Director Brent Jett is flying weather reconnaissance flights at Kennedy and reports the conditions are as predicted. Capcom Chris Ferguson told Hobaugh, "Really good conditions down here."

Landing Day Begins

The seven-astronaut STS-129 crew was awakened at 1:28 a.m. EST with the song "Home Sweet Home" by Motley Crue. Landing is scheduled for 9:44 a.m. at Kennedy Space Center in Florida.

Atlantis Ready for Landing Friday

The STS-129 crew spent its final full day in space Thursday. The crew tested Atlantis’ flight control system, the flaps and rudders that will guide it through the atmosphere, and test fired the thruster jets that control its orientation in space and during early re-entry.

All crew members spent time stowing items in the shuttle’s cabin in preparation for the return to Earth. Landing is scheduled for 9:44 a.m. EST at Kennedy Space Center in Florida.

Fermi Telescope Peers Deep into Microquasar


NASA's Fermi Gamma-ray Space Telescope has made the first unambiguous detection of high-energy gamma-rays from an enigmatic binary system known as Cygnus X-3. The system pairs a hot, massive star with a compact object -- either a neutron star or a black hole -- that blasts twin radio-emitting jets of matter into space at more than half the speed of light.

Astronomers call these systems microquasars. Their properties -- strong emission across a broad range of wavelengths, rapid brightness changes, and radio jets -- resemble miniature versions of distant galaxies (called quasars and blazars) whose emissions are thought to be powered by enormous black holes.

"Cygnus X-3 is a genuine microquasar and it's the first for which we can prove high-energy gamma-ray emission," said St├ęphane Corbel at Paris Diderot University in France.

The system, first detected in 1966 as among the sky's strongest X-ray sources, was also one of the earliest claimed gamma-ray sources. Efforts to confirm those observations helped spur the development of improved gamma-ray detectors, a legacy culminating in the Large Area Telescope (LAT) aboard Fermi.

At the center of Cygnus X-3 lies a massive Wolf-Rayet star. With a surface temperature of 180,000 degrees F, or about 17 times hotter than the sun, the star is so hot that its mass bleeds into space in the form of a powerful outflow called a stellar wind. "In just 100,000 years, this fast, dense wind removes as much mass from the Wolf-Rayet star as our sun contains," said Robin Corbet at the University of Maryland, Baltimore County.

Every 4.8 hours, a compact companion embedded in a disk of hot gas wheels around the star. "This object is most likely a black hole, but we can't yet rule out a neutron star," Corbet noted.

Fermi's LAT detects changes in Cygnus X-3's gamma-ray output related to the companion's 4.8-hour orbital motion. The brightest gamma-ray emission occurs when the disk is on the far side of its orbit. "This suggests that the gamma rays arise from interactions between rapidly moving electrons above and below the disk and the star's ultraviolet light," Corbel explained.

When ultraviolet photons strike particles moving at an appreciable fraction of the speed of light, the photons gain energy and become gamma rays. "The process works best when an energetic electron already heading toward Earth suffers a head-on collision with an ultraviolet photon," added Guillaume Dubus at the Laboratory for Astrophysics in Grenoble, France. "And this occurs most often when the disk is on the far side of its orbit."

Through processes not fully understood, some of the gas falling toward Cygnus X-3's compact object instead rushes outward in a pair of narrow, oppositely directed jets. Radio observations clock gas motion within these jets at more than half the speed of light.

Between Oct. 11 and Dec. 20, 2008, and again between June 8 and Aug. 2, 2009, Cygnus X-3 was unusually active. The team found that outbursts in the system's gamma-ray emission preceded flaring in the radio jet by roughly five days, strongly suggesting a relationship between the two.

The findings, published today in the electronic edition of Science, will provide new insight into how high-energy particles become accelerated and how they move through the jets.
NASA's Fermi Gamma-ray Space Telescope has made the first unambiguous detection of high-energy gamma-rays from an enigmatic binary system known as Cygnus X-3. The system pairs a hot, massive star with a compact object -- either a neutron star or a black hole -- that blasts twin radio-emitting jets of matter into space at more than half the speed of light.

Astronomers call these systems microquasars. Their properties -- strong emission across a broad range of wavelengths, rapid brightness changes, and radio jets -- resemble miniature versions of distant galaxies (called quasars and blazars) whose emissions are thought to be powered by enormous black holes.

"Cygnus X-3 is a genuine microquasar and it's the first for which we can prove high-energy gamma-ray emission," said St├ęphane Corbel at Paris Diderot University in France.

The system, first detected in 1966 as among the sky's strongest X-ray sources, was also one of the earliest claimed gamma-ray sources. Efforts to confirm those observations helped spur the development of improved gamma-ray detectors, a legacy culminating in the Large Area Telescope (LAT) aboard Fermi.

At the center of Cygnus X-3 lies a massive Wolf-Rayet star. With a surface temperature of 180,000 degrees F, or about 17 times hotter than the sun, the star is so hot that its mass bleeds into space in the form of a powerful outflow called a stellar wind. "In just 100,000 years, this fast, dense wind removes as much mass from the Wolf-Rayet star as our sun contains," said Robin Corbet at the University of Maryland, Baltimore County.

Every 4.8 hours, a compact companion embedded in a disk of hot gas wheels around the star. "This object is most likely a black hole, but we can't yet rule out a neutron star," Corbet noted.

Fermi's LAT detects changes in Cygnus X-3's gamma-ray output related to the companion's 4.8-hour orbital motion. The brightest gamma-ray emission occurs when the disk is on the far side of its orbit. "This suggests that the gamma rays arise from interactions between rapidly moving electrons above and below the disk and the star's ultraviolet light," Corbel explained.

When ultraviolet photons strike particles moving at an appreciable fraction of the speed of light, the photons gain energy and become gamma rays. "The process works best when an energetic electron already heading toward Earth suffers a head-on collision with an ultraviolet photon," added Guillaume Dubus at the Laboratory for Astrophysics in Grenoble, France. "And this occurs most often when the disk is on the far side of its orbit."

Through processes not fully understood, some of the gas falling toward Cygnus X-3's compact object instead rushes outward in a pair of narrow, oppositely directed jets. Radio observations clock gas motion within these jets at more than half the speed of light.

Between Oct. 11 and Dec. 20, 2008, and again between June 8 and Aug. 2, 2009, Cygnus X-3 was unusually active. The team found that outbursts in the system's gamma-ray emission preceded flaring in the radio jet by roughly five days, strongly suggesting a relationship between the two.

The findings, published today in the electronic edition of Science, will provide new insight into how high-energy particles become accelerated and how they move through the jets.